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Figures of Bruhat—Tits building

Figure: Bsp,(q,), from a talk by Annette Werner


https://www.math-berlin.de/images/stories/bruhat-tits.pdf

Figures of Bruhat—Tits building

Figure: Bsr,(q,), from buildings.gallery


https://buildings.gallery/
https://buildings.gallery/

Figures of Bruhat—Tits building

Figure: BSLZ(Qz)


https://buildings.gallery/
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Figure: BSLQ(Qz)
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Standard subgroups

B ok GL,(k)/B = { flags of K"}
— kok e
* ={Vic---CV,=,"|dimV; =i}
P KLk GLn(k)/P = Gr(r,n)
S\ = {VCk"|dimV =7}

*
Tz( ) ~ GLp(K)/T = {k"=W1@--- W, | dmW;=1}
*

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

X*(T) :== Hom(T', G,,,) = 2" characters (1-dim reps)
X(T) == Hom(G,,,T) =Z"  cocharacters (1-parameter subgps)
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Weyl group

Definition (Weyl group)

W = Ng(T)/T.
When G = GL,(k),
Ng(T) = { monoidal matrices }

NG(T)/T = Sn
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Weyl group

We have Bruhat decomposition

G= || BwB.
weWw
So the Weyl group is the “heart” of the reductive group.

Figure: Pinned butterfly


https://jmilne.org/math/Books/iag.html
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(*4), Xu(T) = Zey & Zesy, where

Sy

e1: G, — T
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ea: Gy — T
T — (1:6)

W = SQ = {Id, 81}
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When G = SLa(k), T = (* ;-1 ), X«(T) = Ze, where

’
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0 £, W = Sy = {Id, s1}
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Weyl group action on cocharacter lattices

When G = SLa(k), T = (“ ,-1), X«(T) = Ze, where

S,
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AR T SN S
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When G = SL3(k), T = (a b *1b*1>' X«(T) = Zey ® Zeo, where

e1: G —— T

a
e ()

ey: Gy ——— T
1
T — ( xfl)

W = 53 = <81,82>
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{ Borel subgroups } = {gBog_l } = G/By
{ parabolic subgroups } = {gPog*1 } =G/P
{ maximal tori } = {gTog_1 } = G/Na(Th)
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Non-standard subgroups

{ Borel subgroups } = {gBog_l } = G/By
{ parabolic subgroups } = {gPog*1 } =G/P
{ maximal tori } = {gTOg_1 } = G/Na(Th)

{(B,1)| B>T}y = {(9Bog™",9Tog™")} =G/Ty

{T | TCBoy} {B| B2>Tv} By /Ty Ng(To)/To=W

~ — ~ ~
{(B,T)} G/To
{B} {T} G/Bo G/Ne(To)
{ (Weyl) chambers } Shoow &L {B| B D1y}
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Weyl group action on cocharacter lattices(revisited)

When G = SLa(k), T = (“ ,-1), X«(T) = Ze, where
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Definition (chamber, apartment and building)

Given a maximal torus 7', the apartment is

Ar = X,(Tr = | Cs,
BDOT

and the building is

B:= <|F|AT> /~ = Ca.

B
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Example of spherical building

When G = SLy(F2), the building B has 3 apartments and 3
chambers.

f(ii\Id}

(te) (*3)

Figure: Bsr, (F,)


https://buildings.gallery/

Example of spherical building

When G = SLy(F2), the building B has 3 apartments and 3
chambers.

f(Y). Io{}

(te) (*3)

Figure: Bsr, (F,)

When G = SL3(F3), the building B has 28 apartments and 21
chambers.


https://buildings.gallery/
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Remark

B inherits the metric structure from Ap = X, (T)g.
B has also polysimplicial complex structure.
When k = IF,,, B is finite.

@ Any two chambers lie in one apartment.

@ There is a unique geodesic through any two points py,p2 € B.
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p-adic notation

symbol name example
F NA local field | Q,
0 =0F ring of integers | Z,
p=pFr maximal ideal | pZ,
k=0/p residue field F,
TE P p? uniformizer P
v: F* — Z | valuation (%pk) =k
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standard subgroups in the p-adic world

7 : GL,(0O) — GL, (k)

000

I=n1YB)= (p (@) O) Iwahori subgroup
ppO

- 0 0

P=rYP)=|"1"" Parahoric subgroup
p: O

They also have moduli interpretations. For example,

GL,(F)/ I~ {pL=LoC L C--- CLy=1L| Liz1/L; = £}
= {O-lattice chains in F"}
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Extended Weyl group

To get the Iwahori decomposition

GF)= || Iwl,

wEWext

we define the extended Weyl group as

Wext = Ng(T )/T = X*(T) X Wf.

When G = GL,,(F),

Wext = { monoidal matrices } / (O_*_ ) = 7" xS,

‘O
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Extended Weyl group action

Wext acts on X, (T') by “twisted conjugation”:

Wext X Xo(T) — X.(T) (X u, ) — g+ udu™!

When G = SLy(F'), Wext = (S0, 1), where

o) )

S, s,

[T

4

’ 0




Extended Weyl group action

Wext acts on X, (T') by “twisted conjugation”:

Wext X Xo(T) — Xo(T) (X u, \) — o+ udu™!

When G = SLa(F'), Wext = (S0, 1), where

o) )

3
__3_'
/.

Sss i8S S ’ Tol S, | SS ! sS.S | SnSsi
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Extended Weyl group action

When G = SL3(F'), Wext = (S0, S1, S2), where

() () ()

v




Extended Weyl group action

When G = SL3(F), Wext = (S0, 51, S2), where




Extended Weyl group action

When G = SL3(F'), Wext = (S0, S1, S2), where




Extended Weyl group action

stsuts

N N N N N

Figure: Reduced expressions labels, from Lievis


https://www.jgibson.id.au/lievis/

Non-standard subgroups in the p-adic world



Non-standard subgroups in the p-adic world

Similarly,
{ Iwahori subgroups } = {910971 } =G/
{ paraholic subgroups } = {gﬁog_l } = G/ISO

{ maximal tori over O } = {gTog_1 } = G/Ng(Thy



Non-standard subgroups in the p-adic world

Similarly,
{ lwahori subgroups } = {910971 } =G/
{ paraholic subgroups } {gPog_1 } = G/ISO
{ maximal tori over O } = {gTog_1 } = G/Ng(Thy
{(1,1) | 15T} = {(9Tog™",gTog™")} =G/Ty



Non-standard subgroups in the p-adic world

Similarly,
{ Iwahori subgroups } = {910971 } =G/
{ paraholic subgroups } = {gﬁog_l } = G/ISO
{ maximal tori over O } = {gTog_1 } = G/Ng(Thy
{(1,1) | 15T} = {(9Tog™",gTog™")} =G/Ty
{T | TCIO} {I | IDTo} Io/To NG(To)/Tozwext
~ - ~ —~

{(I,T)} G/To
/ \ VAN

G/Io G/NG(TO)



Non-standard subgroups in the p-adic world

Similarly,
{ lwahori subgroups } = {g[og*1 } =G/
{ paraholic subgroups } = {gﬁog_l } = G/ISO
{ maximal tori over O } = {gTog_1 } = G/Ng(Thy
{(1,1) | 15T} = {(9Tog™",gTog™")} =G/Ty
{T | TCIO} {I | IDTo} Io/To NG(TO)/TO:Wext
~ ~ N ~
((1,T)} G/Ty
G/ G/Na(Th)

{ chambers } AL W &5 {I|ID>1Tv}



Comparison

Favaholm 2G Fava/\ovic 2K,
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Wext acts on X, (T') by “twisted conjugation”:
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When G = SLy(F'), Wext = (S0, 1), where
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Wext acts on X, (T') by “twisted conjugation”:
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When G = SLy(F'), Wext = (S0, 1), where
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Extended Weyl group action(revisited)
Wext acts on X,.(T') by “twisted conjugation”:

Wext X Xo(T) — Xo(T) (X u,\) — g+ udu?!

When G = SLy(F'), Wext = (S0, 51), where

() )

sgs,s,é ss, S ‘ Lol ° 8 SS. ‘;’zs,sbs. Es}s,s.s°
(8.5) (95) (%5) (95) (55) (25) (5F) (2]
(@5) (95) (2B) (58) (25) (25) (%5)



Extended Weyl group action(revisited)

When G = SL3(F'), Wext = (S0, S1, S2), where
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Extended Weyl group action(revisited)
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Definition (chamber, apartment and building)

Given a maximal torus T" over O, the apartment is
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p-adic building

Definition (chamber, apartment and building)

Given a maximal torus T" over O, the apartment is

AT = X*(T)R = U CI7

10T

and the p-adic building is

B:= <|?|AT> /~ = ¢

I

RENEILS

Similarly, any two chambers lie in one apartment,
and there is a unique geodesic through p1,p2 € B.
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The Gromov-Schoen theorem

Theorem

Let F' be a NA local field, (M, g) be a cpt conn Riemannian
manifold with the universal covering space M .

For any reductive homomorphism
p:m (M) — GL,(F),

there exists a m (M)-equivariant Lipschitz continuous regular
harmonic map .
hp M — BGLn(F)

Za

We call p reductive when p(mr (M))"" C GL,(F) is reductive.
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a neighbourhood of x has image inside an apartment Ap of B.
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codim ; {x eM ‘ h, is not regular at = } > 2.

Example

The map
fiR2— {y? =22 (a,)— (alt],bla])

is regular.



regularity

The map
f:R? — {y2 = (L’Q} (a,b) — (albl, blal)

is regular.



regularity

The map
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regularity

The map
fiR2— =22} (a,) — (alt],bla])

is regular.

|K1 > fﬂ"‘_—. x‘]



regularity

Example

The map
fiR = {y? =2} (a,b) — (alp].bla])

is regular.

il

[R1 > f'lj‘: X



Thanks for listening!

You can get this slide at:
https://github.com /ramified /personal_tex_collection/raw/main/
Bruhat-Tits_building/Bruhat-Tits_building.pdf
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