

Bruhat–Tits building

Xiaoxiang Zhou

Humboldt-Universität zu Berlin

January 25, 2026

Figures of Bruhat–Tits building

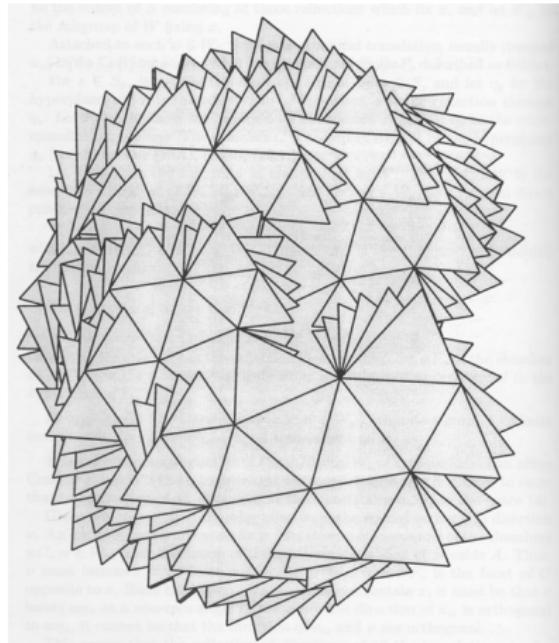


Figure: $\mathcal{B}_{\mathrm{SL}_3(\mathbb{Q}_p)}$, from a talk by Annette Werner

Figures of Bruhat–Tits building

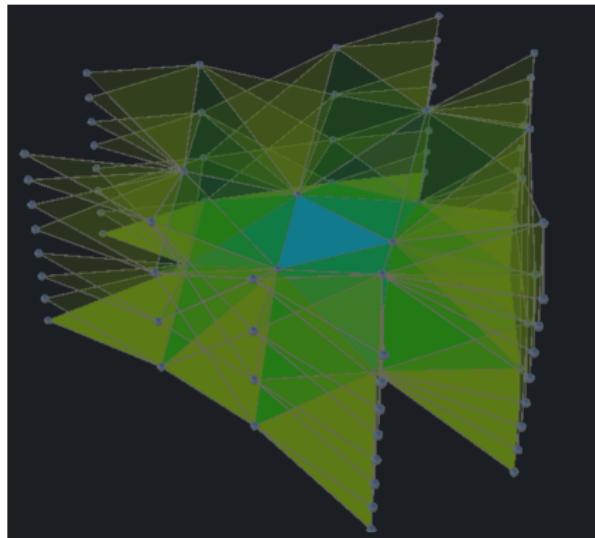


Figure: $\mathcal{B}_{\mathrm{SL}_3(\mathbb{Q}_p)}$, from `buildings.gallery`

Figures of Bruhat–Tits building

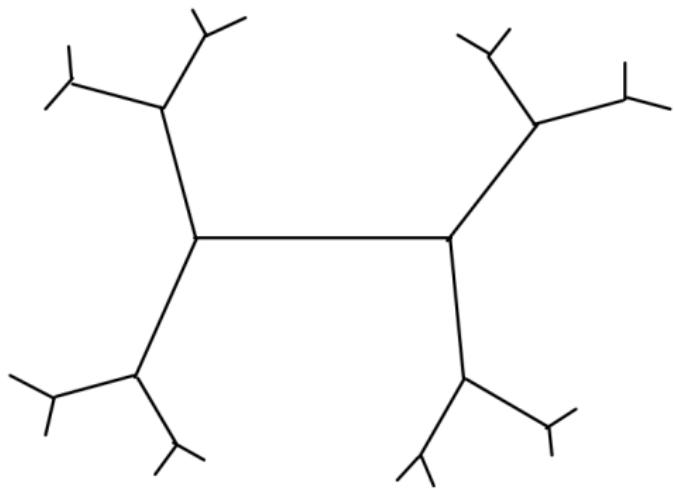


Figure: $\mathcal{B}_{\mathrm{SL}_2(\mathbb{Q}_2)}$

Figures of Bruhat–Tits building

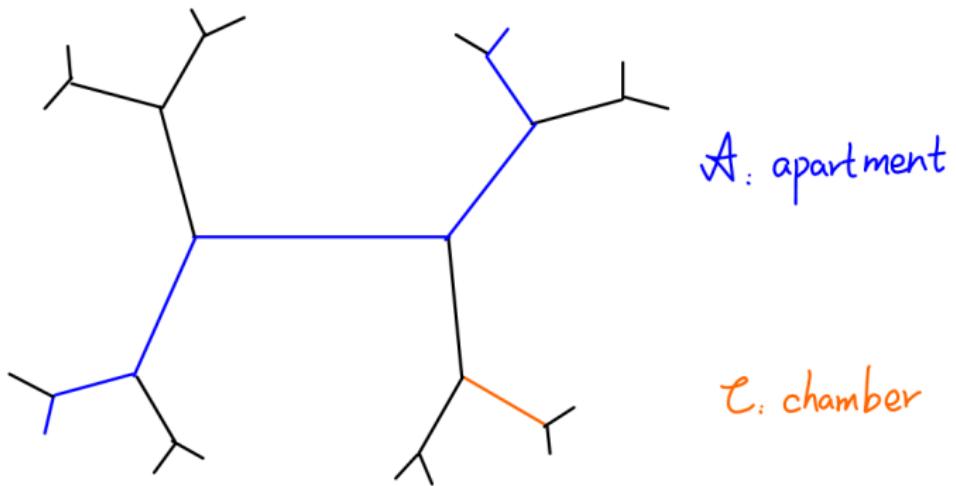


Figure: $\mathcal{B}_{SL_2(\mathbb{Q}_2)}$

Plan of the talk

- 1 Spherical buildings
- 2 p -adic buildings
- 3 The Gromov-Schoen theorem

Plan of the talk

- 1 Spherical buildings
- 2 p -adic buildings
- 3 The Gromov-Schoen theorem

Standard subgroups

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \leadsto \quad \mathrm{GL}_n(\kappa)/B = \{ \text{ flags of } \kappa^n \}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{ flags of } \kappa^n \} \\ &= \{ V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i \} \end{aligned}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{ V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i \} \end{aligned}$$

$$\begin{aligned} \mathrm{Gr}(r, n) \\ &= \{ V \subset \kappa^n \mid \dim V = r \} \end{aligned}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{ V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i \} \end{aligned}$$

$$\begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{ V \subset \kappa^n \mid \dim V = r \} \end{aligned}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & * \\ \vdash & \dashv \\ \vdash & \dashv \\ * & \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & * & & \\ \cdots & \cdots & \cdots & \\ \cdots & \cdots & \cdots & \\ & & & * \end{pmatrix} \quad \rightsquigarrow \quad \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \cdots & \cdots & \cdots \\ | & | & | \\ * & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \cdots & \cdots & \cdots \\ | & | & | \\ * & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \cdots & \cdots & \cdots \\ | & | & | \\ * & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

$$X^*(T) := \mathrm{Hom}(T, \mathbb{G}_m) \cong \mathbb{Z}^n$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \cdots & \cdots & \cdots \\ | & | & | \\ * & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

$$X^*(T) := \mathrm{Hom}(T, \mathbb{G}_m) \cong \mathbb{Z}^n \quad \text{characters (1-dim reps)}$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \cdots & \cdots & \cdots \\ | & | & | \\ * & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

$$X^*(T) := \mathrm{Hom}(T, \mathbb{G}_m) \cong \mathbb{Z}^n \quad \text{characters (1-dim reps)}$$

$$X_*(T) := \mathrm{Hom}(\mathbb{G}_m, T) \cong \mathbb{Z}^n$$

Standard subgroups

$$B = \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/B &= \{ \text{flags of } \kappa^n \} \\ &= \{V_1 \subset \cdots \subset V_n = \kappa^n \mid \dim V_i = i\} \end{aligned}$$

$$P = \begin{pmatrix} * & & * \\ \hline & \cdots & \\ \hline & & * \end{pmatrix} \rightsquigarrow \begin{aligned} \mathrm{GL}_n(\kappa)/P &= \mathrm{Gr}(r, n) \\ &= \{V \subset \kappa^n \mid \dim V = r\} \end{aligned}$$

$$T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & * \end{pmatrix} \rightsquigarrow \mathrm{GL}_n(\kappa)/T = \{\kappa^n = W_1 \oplus \cdots \oplus W_n \mid \dim W_i = 1\}$$

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

$$X^*(T) := \mathrm{Hom}(T, \mathbb{G}_m) \cong \mathbb{Z}^n \quad \text{characters (1-dim reps)}$$

$$X_*(T) := \mathrm{Hom}(\mathbb{G}_m, T) \cong \mathbb{Z}^n \quad \text{cocharacters (1-parameter subgps)}$$

Weyl group

Weyl group

Definition (Weyl group)

$$W := N_G(T)/T.$$

Weyl group

Definition (Weyl group)

$$W := N_G(T)/T.$$

Example

When $G = \mathrm{GL}_n(\kappa)$,

$$N_G(T) = \{ \text{monoidal matrices} \}$$

$$N_G(T)/T \cong S_n \quad \text{Weyl group of type } A$$

Weyl group

Definition (Weyl group)

$$W := N_G(T)/T.$$

Example

When $G = \mathrm{GL}_n(\kappa)$,

$$N_G(T) = \{ \text{monoidal matrices} \}$$

$$N_G(T)/T \cong S_n \quad \text{Weyl group of type } A$$

Remark

We have Bruhat decomposition proved by Gauss elimination

$$G = \bigsqcup_{\omega \in W} B\omega B.$$

So the Weyl group is the “heart” of the reductive group.

Weyl group

Remark

We have Bruhat decomposition proved by Gauss elimination

$$G = \bigsqcup_{\omega \in W} B\omega B.$$

So the Weyl group is the “heart” of the reductive group.

Weyl group

Remark

We have Bruhat decomposition proved by Gauss elimination

$$G = \bigsqcup_{\omega \in W} B\omega B.$$

So the Weyl group is the “heart” of the reductive group.

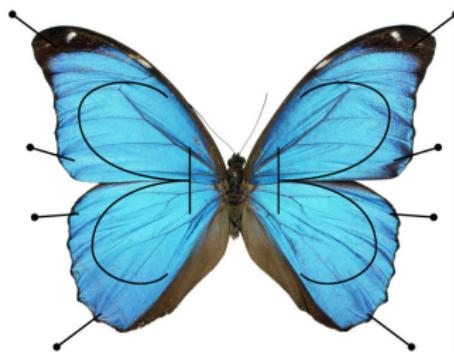


Figure: Pinned butterfly

Weyl group action on cocharacter lattices

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

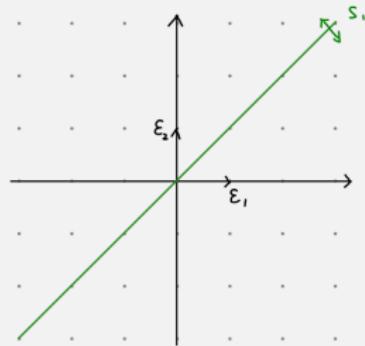
$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

$$W = S_2 = \{\mathrm{Id}, s_1\}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



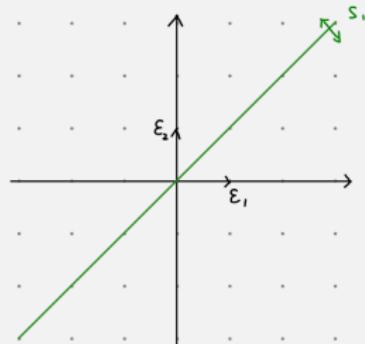
$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

$$W = S_2 = \{\mathrm{Id}, s_1\}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

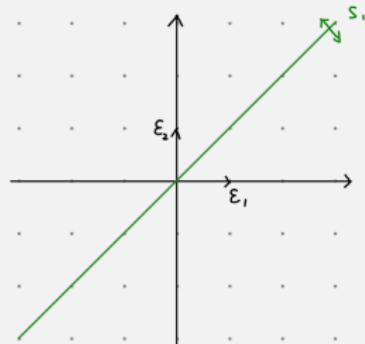
$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

$$W = S_2 = \{\mathrm{Id}, s_1\}$$

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ x & \end{pmatrix}\end{aligned}$$

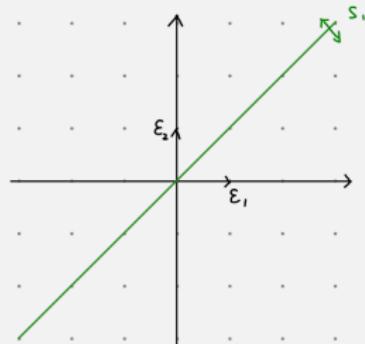
$$W = S_2 = \{\mathrm{Id}, s_1\}$$

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where

$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix}\end{aligned}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

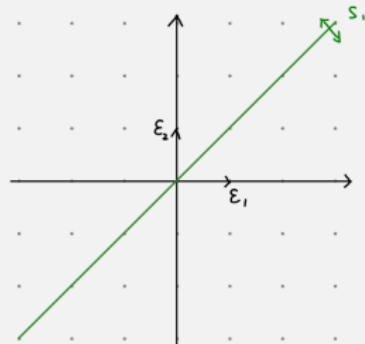
$$W = S_2 = \{\mathrm{Id}, s_1\}$$

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where

$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix}\end{aligned}$$
$$W = S_2 = \{\mathrm{Id}, s_1\}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{GL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & b \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & \\ & x \end{pmatrix}\end{aligned}$$

$$W = S_2 = \{\mathrm{Id}, s_1\}$$

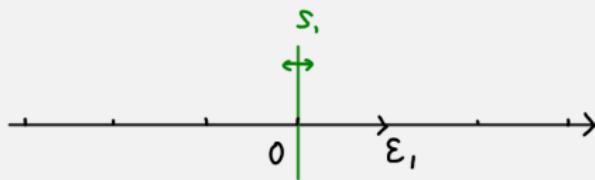
When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where



$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix} \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where



$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \left(\begin{smallmatrix} x & \\ & x^{-1} \end{smallmatrix} \right) \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where

When $G = \mathrm{SL}_3(\kappa)$, $T = \left(\begin{smallmatrix} a & & \\ & b & \\ & & a^{-1}b^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where

When $G = \mathrm{SL}_3(\kappa)$, $T = \left(\begin{smallmatrix} a & & \\ & b & \\ & & a^{-1}b^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

$$\varepsilon_1 : \mathbb{G}_m \longrightarrow T$$
$$x \longmapsto \left(\begin{smallmatrix} x & & \\ & x^{-1} & \\ & & 1 \end{smallmatrix} \right)$$

$$\varepsilon_2 : \mathbb{G}_m \longrightarrow T$$
$$x \longmapsto \left(\begin{smallmatrix} 1 & & \\ & x & \\ & & x^{-1} \end{smallmatrix} \right)$$

Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where

$$\varepsilon : \mathbb{G}_m \longrightarrow T$$
$$x \longmapsto \left(\begin{smallmatrix} x & \\ & x^{-1} \end{smallmatrix} \right)$$
$$W = S_2 = \{ \mathrm{Id}, s_1 \}$$

When $G = \mathrm{SL}_3(\kappa)$, $T = \left(\begin{smallmatrix} a & & \\ & b & \\ & & a^{-1}b^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

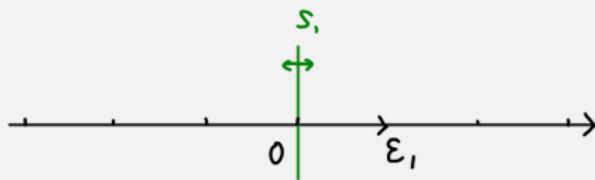
$$\varepsilon_1 : \mathbb{G}_m \longrightarrow T$$
$$x \longmapsto \left(\begin{smallmatrix} x & & \\ & x^{-1} & \\ & & 1 \end{smallmatrix} \right)$$

$$\varepsilon_2 : \mathbb{G}_m \longrightarrow T$$
$$x \longmapsto \left(\begin{smallmatrix} 1 & & \\ & x & \\ & & x^{-1} \end{smallmatrix} \right)$$

$$W = S_3 = \langle s_1, s_2 \rangle$$

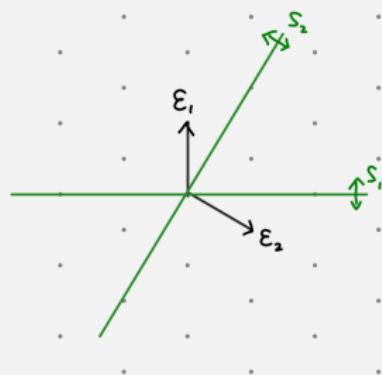
Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where



$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix} \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

When $G = \mathrm{SL}_3(\kappa)$, $T = \begin{pmatrix} a & b & \\ & a^{-1}b^{-1} & \\ & & \ddots \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



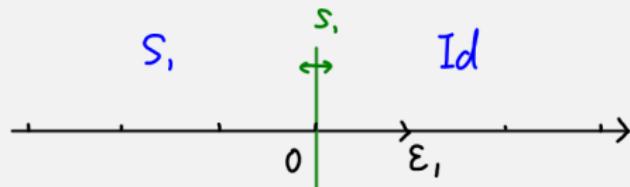
$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & & \\ & x^{-1} & \\ & & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & & \\ & x & \\ & & x^{-1} \end{pmatrix}\end{aligned}$$

$$W = S_3 = \langle s_1, s_2 \rangle$$

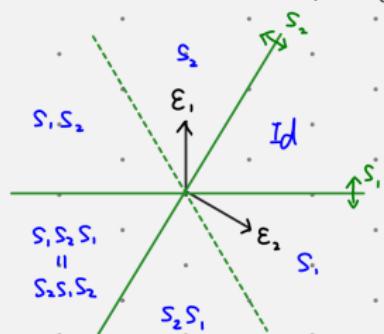
Weyl group action on cocharacter lattices

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where



$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix} \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

When $G = \mathrm{SL}_3(\kappa)$, $T = \begin{pmatrix} a & b & \\ & a^{-1}b^{-1} & \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



$$\begin{aligned}\varepsilon_1 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} x & & \\ & x^{-1} & \\ & & 1 \end{pmatrix}\end{aligned}$$

$$\begin{aligned}\varepsilon_2 : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \begin{pmatrix} 1 & & \\ & x & \\ & & x^{-1} \end{pmatrix}\end{aligned}$$

$$W = S_3 = \langle s_1, s_2 \rangle$$

Non-standard subgroups

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Fact

*All non-standard subgroups are conjugated to standard subgroups.
Therefore,*

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Fact

*All non-standard subgroups are conjugated to standard subgroups.
Therefore,*

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\}$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\}$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\}$$

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Fact

*All non-standard subgroups are conjugated to standard subgroups.
Therefore,*

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\} \quad \cong G/B$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\}$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\}$$

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Fact

*All non-standard subgroups are conjugated to standard subgroups.
Therefore,*

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\} \quad \cong G/B$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\} \quad \cong G/P$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\}$$

Non-standard subgroups

The subgroup $T = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & * & \\ & & & * \end{pmatrix}$ is not the only maximal torus.

Fact

*All non-standard subgroups are conjugated to standard subgroups.
Therefore,*

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\} \quad \cong G/B$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\} \quad \cong G/P$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\} \quad \cong G/N_G(T)$$

Non-standard subgroups

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\} \cong G/B$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\} \cong G/P$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\} \cong G/N_G(T)$$

Non-standard subgroups

$$\{ \text{ Borel subgroups } \} = \left\{ gBg^{-1} \mid g \in G \right\} \cong G/B$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gPg^{-1} \mid g \in G \right\} \cong G/P$$

$$\{ \text{ maximal tori } \} = \left\{ gTg^{-1} \mid g \in G \right\} \cong G/N_G(T)$$

$$\{ (B, T) \mid B \supset T \} = \left\{ (gB_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0$$

Non-standard subgroups

$$\{ \text{ Borel subgroups } \} = \left\{ gB_0g^{-1} \mid g \in G \right\} \cong G/B_0$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gP_0g^{-1} \mid g \in G \right\} \cong G/P_0$$

$$\{ \text{ maximal tori } \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0)$$

$$\{(B, T) \mid B \supset T\} = \left\{ (gB_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0$$

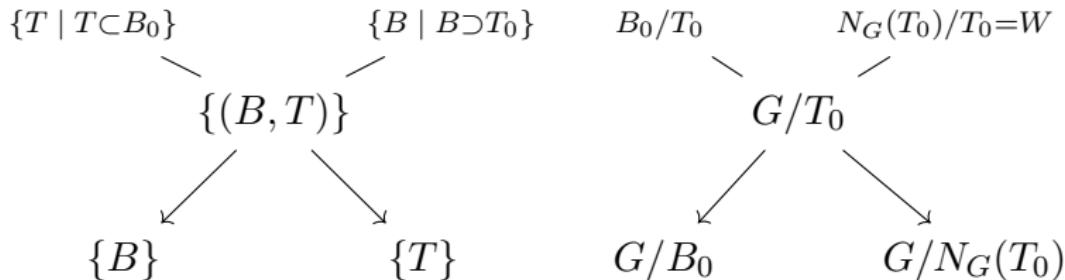
Non-standard subgroups

$$\{ \text{ Borel subgroups } \} = \left\{ gB_0g^{-1} \mid g \in G \right\} \cong G/B_0$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gP_0g^{-1} \mid g \in G \right\} \cong G/P_0$$

$$\{ \text{ maximal tori } \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0)$$

$$\{(B, T) \mid B \supset T\} = \left\{ (gB_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0$$



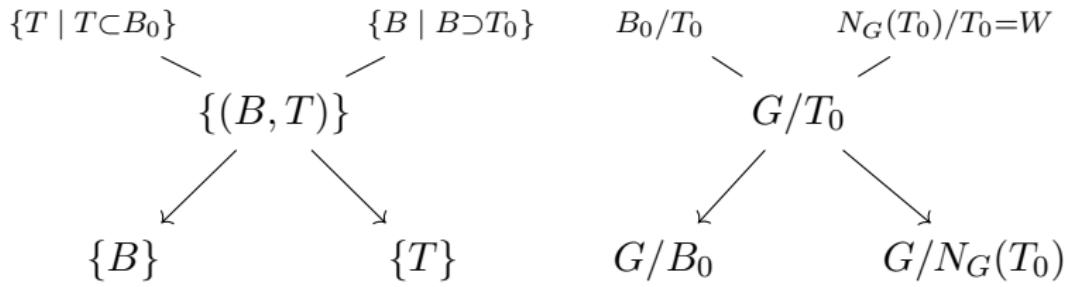
Non-standard subgroups

$$\{ \text{ Borel subgroups } \} = \left\{ gB_0g^{-1} \mid g \in G \right\} \cong G/B_0$$

$$\{ \text{ parabolic subgroups } \} = \left\{ gP_0g^{-1} \mid g \in G \right\} \cong G/P_0$$

$$\{ \text{ maximal tori } \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0)$$

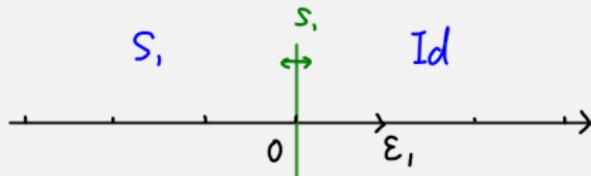
$$\{(B, T) \mid B \supset T\} = \left\{ (gB_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0$$



$$\{ \text{ (Weyl) chambers } \} \xleftrightarrow{1:1} W \xleftrightarrow{1:1} \{B \mid B \supset T_0\}$$

Weyl group action on cocharacter lattices(revisited)

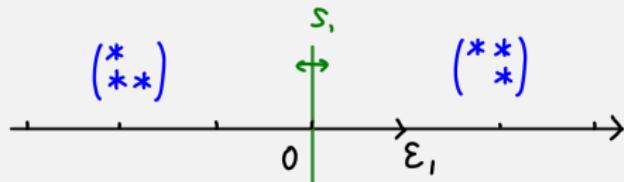
When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where



$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \left(\begin{smallmatrix} x & \\ & x^{-1} \end{smallmatrix} \right) \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

Weyl group action on cocharacter lattices(revisited)

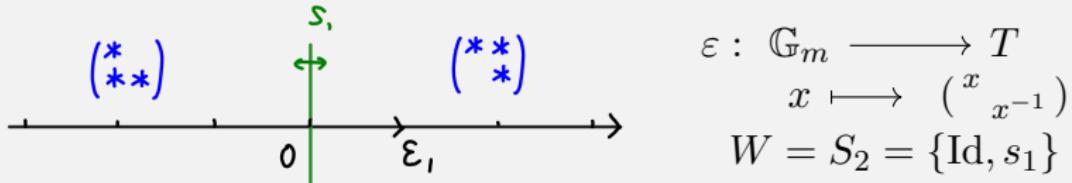
When $G = \mathrm{SL}_2(\kappa)$, $T = \left(\begin{smallmatrix} a & \\ & a^{-1} \end{smallmatrix} \right)$, $X_*(T) = \mathbb{Z}\varepsilon$, where



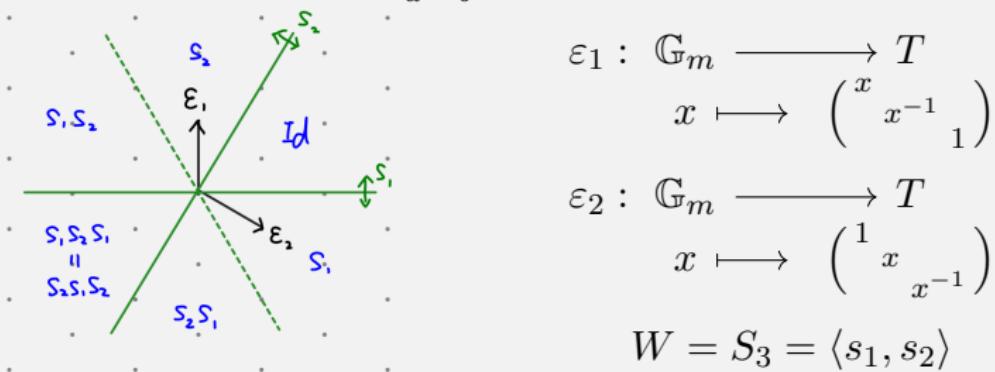
$$\begin{aligned}\varepsilon : \mathbb{G}_m &\longrightarrow T \\ x &\longmapsto \left(\begin{smallmatrix} x & \\ & x^{-1} \end{smallmatrix} \right) \\ W = S_2 &= \{\mathrm{Id}, s_1\}\end{aligned}$$

Weyl group action on cocharacter lattices(revisited)

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where

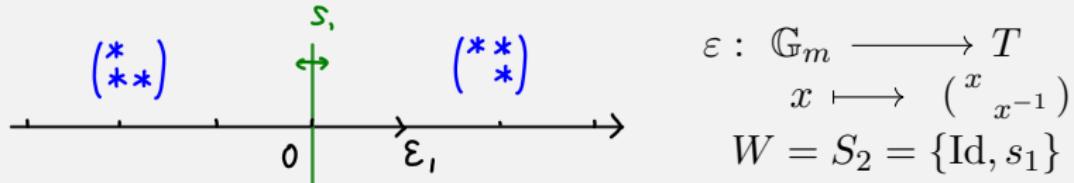


When $G = \mathrm{SL}_3(\kappa)$, $T = \begin{pmatrix} a & b & \\ & a^{-1}b^{-1} & \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

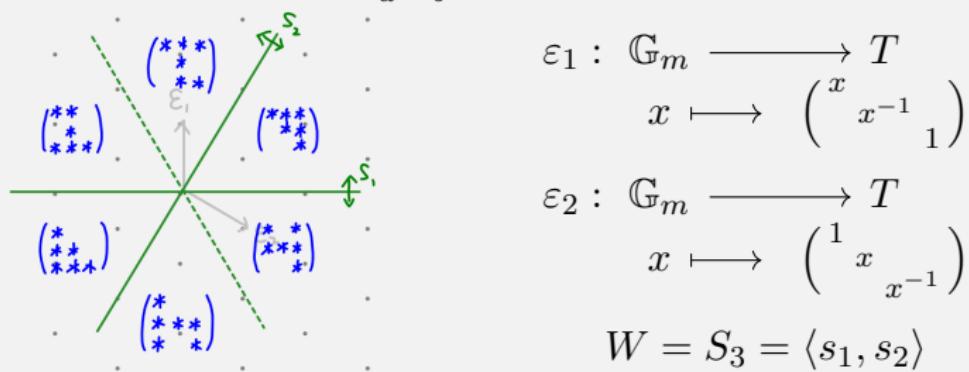


Weyl group action on cocharacter lattices(revisited)

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where



When $G = \mathrm{SL}_3(\kappa)$, $T = \begin{pmatrix} a & b & \\ & a^{-1}b^{-1} & \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where



Weyl group action on cocharacter lattices(revisited)

When $G = \mathrm{SL}_2(\kappa)$, $T = \begin{pmatrix} a & \\ & a^{-1} \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon$, where

$$\begin{array}{ccc}
 \begin{pmatrix} * \\ ** \end{pmatrix} & \xleftrightarrow{s_1} & \begin{pmatrix} ** \\ * \end{pmatrix} \\
 \hline
 \text{---} & 0 & \text{---} \\
 & \varepsilon_1 &
 \end{array}
 \quad
 \begin{array}{c}
 \varepsilon : \mathbb{G}_m \longrightarrow T \\
 x \longmapsto \begin{pmatrix} x & \\ & x^{-1} \end{pmatrix} \\
 W = S_2 = \{\mathrm{Id}, s_1\}
 \end{array}$$

When $G = \mathrm{SL}_3(\kappa)$, $T = \begin{pmatrix} a & b & \\ & a^{-1}b^{-1} & \end{pmatrix}$, $X_*(T) = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2$, where

$$\begin{array}{ccc}
 \begin{pmatrix} *** \\ ** \\ * \end{pmatrix} & \xrightarrow{s_1} & \begin{pmatrix} *** \\ ** \\ * \end{pmatrix} \\
 \begin{pmatrix} ** \\ * \\ * \end{pmatrix} & \xrightarrow{\varepsilon_1} & \begin{pmatrix} * \\ ** \\ * \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ *** \end{pmatrix} & \xrightarrow{s_2} & \begin{pmatrix} * \\ * \\ *** \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ ** \end{pmatrix} & \xrightarrow{\varepsilon_2} & \begin{pmatrix} * \\ * \\ * \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ * \end{pmatrix} & \xrightarrow{s_1} & \begin{pmatrix} * \\ * \\ * \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ * \end{pmatrix} & \xrightarrow{\varepsilon_1} & \begin{pmatrix} * \\ * \\ * \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ * \end{pmatrix} & \xrightarrow{s_2} & \begin{pmatrix} * \\ * \\ * \end{pmatrix} \\
 \begin{pmatrix} * \\ * \\ * \end{pmatrix} & \xrightarrow{\varepsilon_2} & \begin{pmatrix} * \\ * \\ * \end{pmatrix} \\
 \vdots & & \vdots
 \end{array}
 \quad
 \begin{array}{c}
 \varepsilon_1 : \mathbb{G}_m \longrightarrow T \\
 x \longmapsto \begin{pmatrix} x & & \\ & x^{-1} & \\ & & 1 \end{pmatrix} \\
 \varepsilon_2 : \mathbb{G}_m \longrightarrow T \\
 x \longmapsto \begin{pmatrix} 1 & x & \\ & x^{-1} & \end{pmatrix} \\
 W = S_3 = \langle s_1, s_2 \rangle
 \end{array}$$

Definition (chamber, apartment and building)

Given a maximal torus T , the apartment is

$$\mathcal{A}_T := X_*(T)_{\mathbb{R}} = \bigcup_{B \supset T} \mathcal{C}_B,$$

Definition (chamber, apartment and building)

Given a maximal torus T , the apartment is

$$\mathcal{A}_T := X_*(T)_{\mathbb{R}} = \bigcup_{B \supset T} \mathcal{C}_B,$$

and the building is

$$\mathcal{B} := \left(\bigsqcup_T \mathcal{A}_T \right) / \sim = \bigcup_B \mathcal{C}_B.$$

Example of spherical building

Example of spherical building

When $G = \mathrm{SL}_2(\mathbb{F}_2)$, the building \mathcal{B} has 3 apartments and 3 chambers.

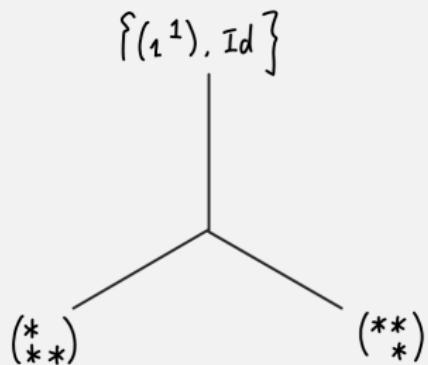


Figure: $\mathcal{B}_{\mathrm{SL}_2(\mathbb{F}_2)}$

Example of spherical building

When $G = \mathrm{SL}_2(\mathbb{F}_2)$, the building \mathcal{B} has 3 apartments and 3 chambers.

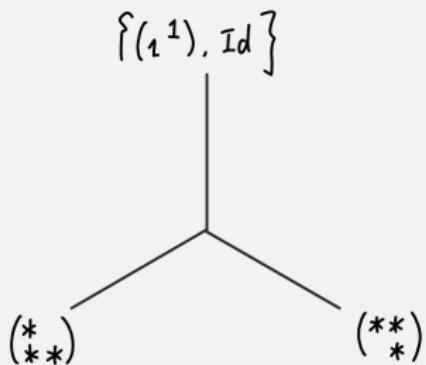


Figure: $\mathcal{B}_{\mathrm{SL}_2(\mathbb{F}_2)}$

When $G = \mathrm{SL}_3(\mathbb{F}_2)$, the building \mathcal{B} has 28 apartments and 21 chambers.

Remark

\mathcal{B} inherits the metric structure from $\mathcal{A}_T = X_*(T)_{\mathbb{R}}$.

Remark

\mathcal{B} inherits the metric structure from $\mathcal{A}_T = X_*(T)_{\mathbb{R}}$.

\mathcal{B} has also polysimplicial complex structure.

When $\kappa = \mathbb{F}_p$, \mathcal{B} is finite. i.e., having finite many chambers

Remark

\mathcal{B} inherits the metric structure from $\mathcal{A}_T = X_*(T)_{\mathbb{R}}$.

\mathcal{B} has also polysimplicial complex structure.

When $\kappa = \mathbb{F}_p$, \mathcal{B} is finite. i.e., having finite many chambers

Proposition

- *Any two chambers lie in one apartment.*

Remark

\mathcal{B} inherits the metric structure from $\mathcal{A}_T = X_*(T)_{\mathbb{R}}$.

\mathcal{B} has also polysimplicial complex structure.

When $\kappa = \mathbb{F}_p$, \mathcal{B} is finite. i.e., having finite many chambers

Proposition

- *Any two chambers lie in one apartment.*
- *There is a unique geodesic through any two points $p_1, p_2 \in \mathcal{B}$.*

Plan of the talk

- 1 Spherical buildings
- 2 p -adic buildings
- 3 The Gromov-Schoen theorem

p -adic notation

symbol	name	example
F	NA local field	
$\mathcal{O} = \mathcal{O}_F$	ring of integers	
$\mathfrak{p} = \mathfrak{p}_F$	maximal ideal	
$\kappa = \mathcal{O}/\mathfrak{p}$	residue field	
$\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$	uniformizer	
$v : F^* \longrightarrow \mathbb{Z}$	valuation	

p -adic notation

symbol	name	example
F	NA local field	\mathbb{Q}_p
$\mathcal{O} = \mathcal{O}_F$	ring of integers	\mathbb{Z}_p
$\mathfrak{p} = \mathfrak{p}_F$	maximal ideal	$p\mathbb{Z}_p$
$\kappa = \mathcal{O}/\mathfrak{p}$	residue field	\mathbb{F}_p
$\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$	uniformizer	p
$v : F^* \longrightarrow \mathbb{Z}$	valuation	$v\left(\frac{a}{b}p^k\right) = k$

standard subgroups in the p -adic world

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

$$I = \pi^{-1}(B) = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathfrak{p} & \mathcal{O} \end{pmatrix}$$

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

$$I = \pi^{-1}(B) = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathfrak{p} & \mathcal{O} \end{pmatrix} \quad \text{Iwahori subgroup}$$

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

$$I = \pi^{-1}(B) = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathfrak{p} & \mathcal{O} \end{pmatrix} \quad \text{Iwahori subgroup}$$

$$\tilde{P} = \pi^{-1}(P) = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \cdots & \cdots \\ \mathfrak{p} & \mathcal{O} \end{pmatrix}$$

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

$$I = \pi^{-1}(B) = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathfrak{p} & \mathcal{O} \end{pmatrix} \quad \text{Iwahori subgroup}$$

$$\tilde{P} = \pi^{-1}(P) = \begin{pmatrix} \mathcal{O} & \mathcal{O} \\ \vdots & \vdots \\ \mathfrak{p} & \mathcal{O} \end{pmatrix} \quad \begin{aligned} &\text{Parahoric subgroup} \\ &= \text{Parabolic Iwahori subgroup} \end{aligned}$$

standard subgroups in the p -adic world

$$\pi : \mathrm{GL}_n(\mathcal{O}) \longrightarrow \mathrm{GL}_n(\kappa)$$

$$I = \pi^{-1}(B) = \begin{pmatrix} \mathcal{O} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathcal{O} & \mathcal{O} \\ \mathfrak{p} & \mathfrak{p} & \mathcal{O} \end{pmatrix} \quad \text{Iwahori subgroup}$$

$$\tilde{P} = \pi^{-1}(P) = \begin{pmatrix} \mathcal{O} & & \mathcal{O} \\ \vdots & \vdots & \vdots \\ \mathfrak{p} & & \mathcal{O} \end{pmatrix} \quad \begin{aligned} &\text{Parahoric subgroup} \\ &= \text{Parabolic Iwahori subgroup} \end{aligned}$$

Remark

They also have moduli interpretations. For example,

$$\begin{aligned} \mathrm{GL}_n(F)/I &\cong \{\mathfrak{p}L = L_0 \subset L_1 \subset \cdots \subset L_n = L \mid L_{i+1}/L_i \cong \kappa\} \\ &= \{\mathcal{O}\text{-lattice chains in } F^n\} \end{aligned}$$

Extended Weyl group

Extended Weyl group

To get the Iwahori decomposition

$$G(F) = \bigsqcup_{\varpi \in W_{\text{ext}}} I\varpi I,$$

we define the extended Weyl group as

$$W_{\text{ext}} := N_G(T(\mathcal{O}))/T(\mathcal{O}) \cong X_*(T) \rtimes W_f.$$

Extended Weyl group

To get the Iwahori decomposition

$$G(F) = \bigsqcup_{\varpi \in W_{\text{ext}}} I\varpi I,$$

we define the extended Weyl group as

$$W_{\text{ext}} := N_G(T(\mathcal{O}))/T(\mathcal{O}) \cong X_*(T) \rtimes W_f.$$

Example

When $G = \text{GL}_n(F)$,

$$W_{\text{ext}} = \{ \text{monoidal matrices} \} \Big/ \left(\begin{smallmatrix} \mathcal{O}^* & & \\ & \ddots & \\ & & \mathcal{O}^* \end{smallmatrix} \right) \cong \mathbb{Z}^n \rtimes S_n.$$

Extended Weyl group action

Extended Weyl group action

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

Extended Weyl group action

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

Extended Weyl group action

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$

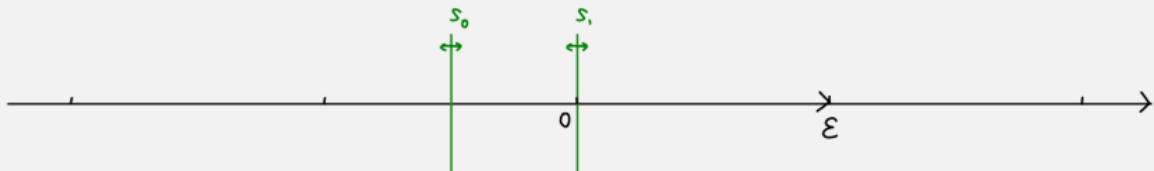
Extended Weyl group action

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$



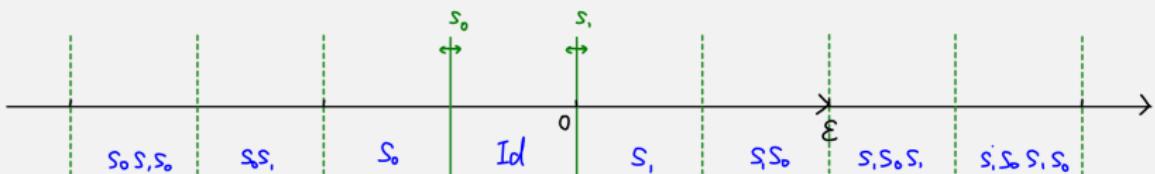
Extended Weyl group action

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$



Extended Weyl group action

When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

Extended Weyl group action

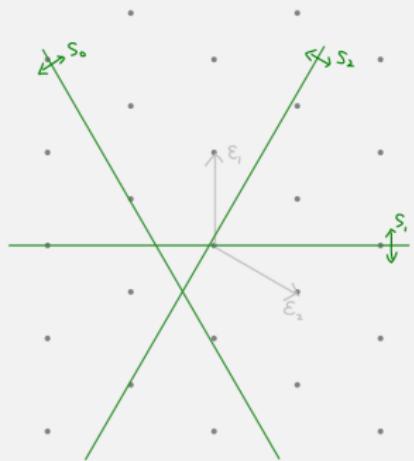
When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_2 = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix} \quad s_0 = \begin{pmatrix} & & \pi^{-1} \\ -\pi & 1 & \end{pmatrix}$$

Extended Weyl group action

When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

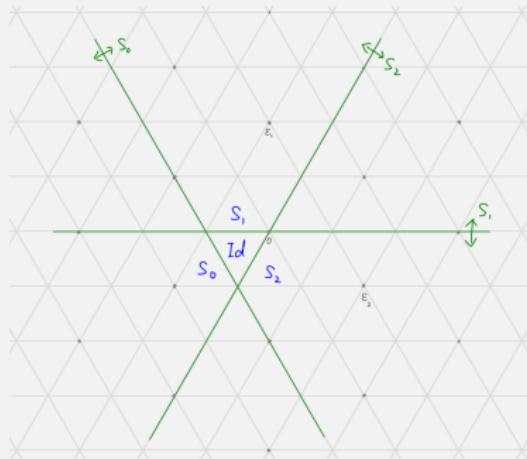
$$s_1 = \begin{pmatrix} 1 & & \\ -1 & 1 & \\ & 1 & \end{pmatrix} \quad s_2 = \begin{pmatrix} 1 & & \\ & 1 & \\ -1 & & \end{pmatrix} \quad s_0 = \begin{pmatrix} & 1 & \pi^{-1} \\ -\pi & & \end{pmatrix}$$



Extended Weyl group action

When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

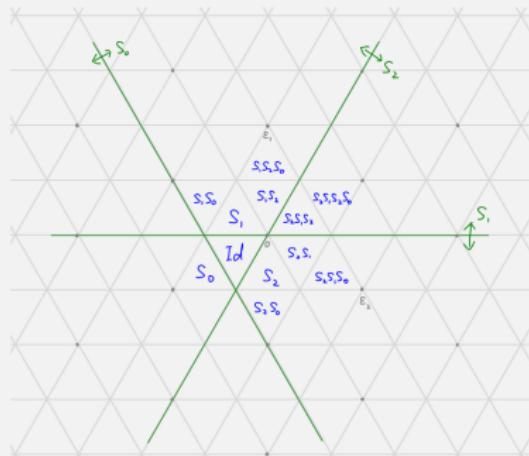
$$s_1 = \begin{pmatrix} 1 & & \\ -1 & 1 & \\ & & 1 \end{pmatrix} \quad s_2 = \begin{pmatrix} 1 & & \\ & 1 & \\ & -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & 1 & \pi^{-1} \\ -\pi & & \end{pmatrix}$$



Extended Weyl group action

When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

$$s_1 = \begin{pmatrix} 1 & & \\ -1 & & \\ & 1 & \end{pmatrix} \quad s_2 = \begin{pmatrix} 1 & & \\ & 1 & \\ & -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & & \pi^{-1} \\ & 1 & \\ -\pi & & \end{pmatrix}$$



Extended Weyl group action

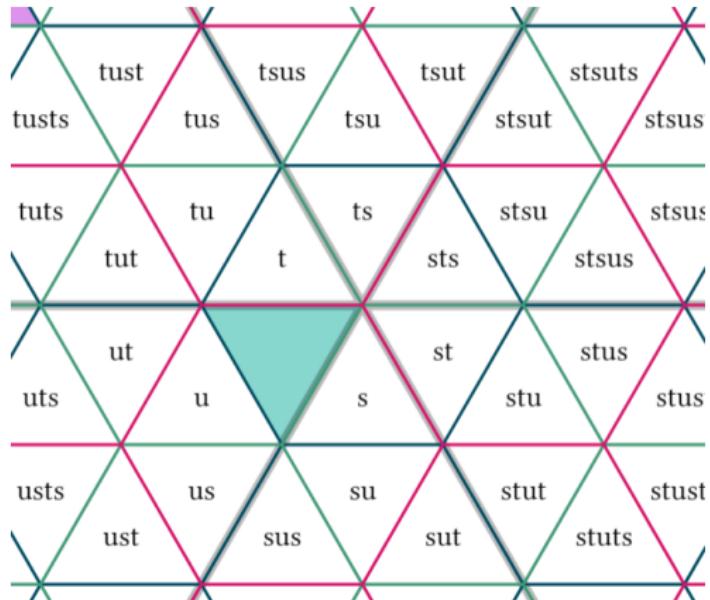


Figure: Reduced expressions labels, from Lievis

Non-standard subgroups in the p -adic world

Non-standard subgroups in the p -adic world

Similarly,

$$\{ \text{Iwahori subgroups} \} = \left\{ gI_0g^{-1} \mid g \in G \right\} \cong G/I_0$$

$$\{ \text{parahoric subgroups} \} = \left\{ g\tilde{P}_0g^{-1} \mid g \in G \right\} \cong G/\tilde{P}_0$$

$$\{ \text{maximal tori over } \mathcal{O} \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0(\mathcal{O}))$$

Non-standard subgroups in the p -adic world

Similarly,

$$\{ \text{Iwahori subgroups} \} = \left\{ gI_0g^{-1} \mid g \in G \right\} \cong G/I_0$$

$$\{ \text{parahoric subgroups} \} = \left\{ g\tilde{P}_0g^{-1} \mid g \in G \right\} \cong G/\tilde{P}_0$$

$$\{ \text{maximal tori over } \mathcal{O} \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0(\mathcal{O}))$$

$$\{ (I, T) \mid I \supset T \} = \left\{ (gI_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0(\mathcal{O})$$

Non-standard subgroups in the p -adic world

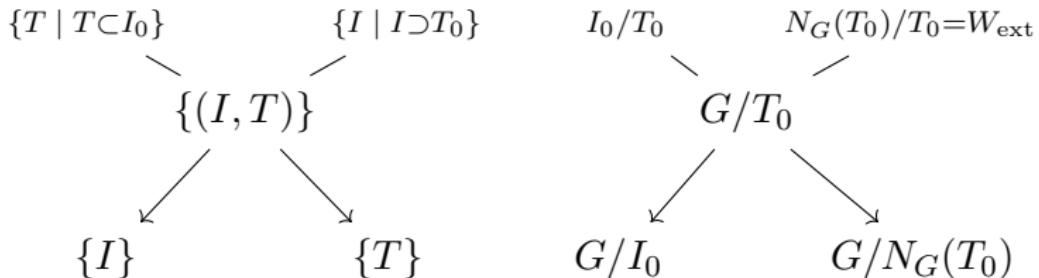
Similarly,

$$\{ \text{Iwahori subgroups} \} = \left\{ gI_0g^{-1} \mid g \in G \right\} \cong G/I_0$$

$$\{ \text{parahoric subgroups} \} = \left\{ g\tilde{P}_0g^{-1} \mid g \in G \right\} \cong G/\tilde{P}_0$$

$$\{ \text{maximal tori over } \mathcal{O} \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0(\mathcal{O}))$$

$$\{(I, T) \mid I \supset T\} = \left\{ (gI_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0(\mathcal{O})$$



Non-standard subgroups in the p -adic world

Similarly,

$$\{ \text{Iwahori subgroups} \} = \left\{ gI_0g^{-1} \mid g \in G \right\} \cong G/I_0$$

$$\{ \text{parahoric subgroups} \} = \left\{ g\tilde{P}_0g^{-1} \mid g \in G \right\} \cong G/\tilde{P}_0$$

$$\{ \text{maximal tori over } \mathcal{O} \} = \left\{ gT_0g^{-1} \mid g \in G \right\} \cong G/N_G(T_0(\mathcal{O}))$$

$$\{(I, T) \mid I \supset T\} = \left\{ (gI_0g^{-1}, gT_0g^{-1}) \right\} \cong G/T_0(\mathcal{O})$$

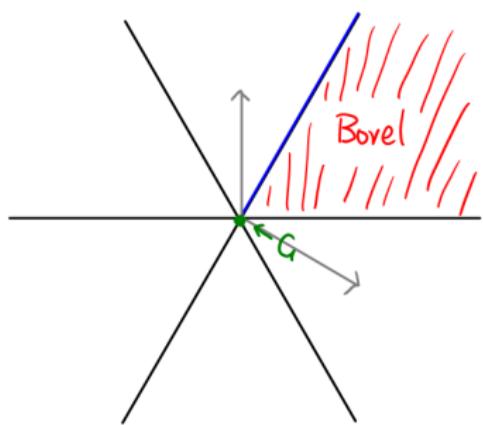
$$\{T \mid T \subset I_0\} \qquad \{I \mid I \supset T_0\} \qquad I_0/T_0 \qquad N_G(T_0)/T_0 = W_{\text{ext}}$$

$$\begin{array}{ccccc} & \{ (I, T) \} & & G/T_0 & \\ \swarrow & & \searrow & & \downarrow \\ \{I\} & & \{T\} & & G/I_0 \\ & & & & \downarrow \\ & & & & G/N_G(T_0) \end{array}$$

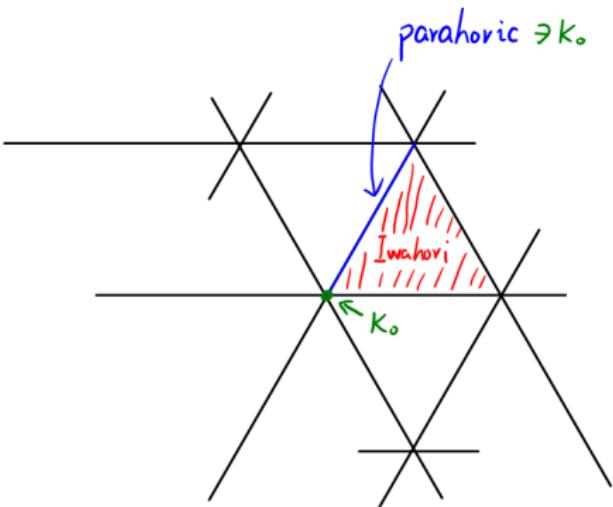
$$\{ \text{chambers} \} \quad \xleftrightarrow{1:1} \quad W_{\text{ext}} \quad \xleftrightarrow{1:1} \quad \{I \mid I \supset T_0\}$$

Comparison

parabolic $\ni G$



parahoric $\ni k_0$



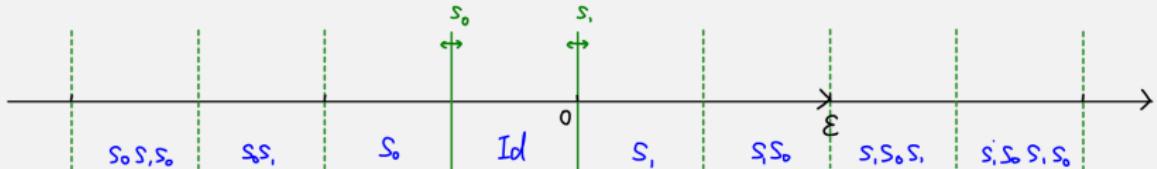
Extended Weyl group action(revisited)

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$



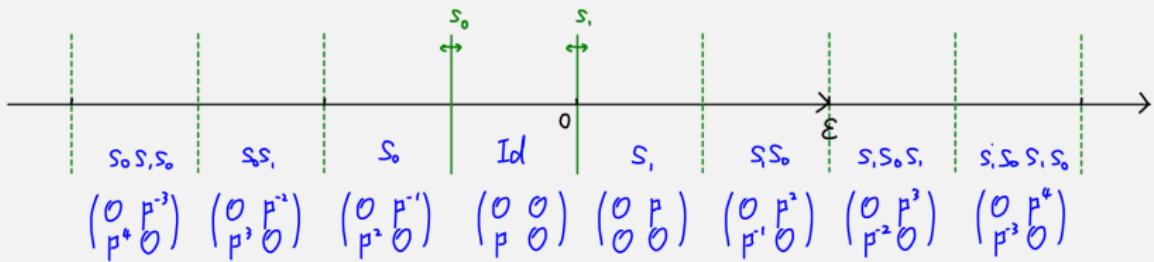
Extended Weyl group action(revisited)

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$



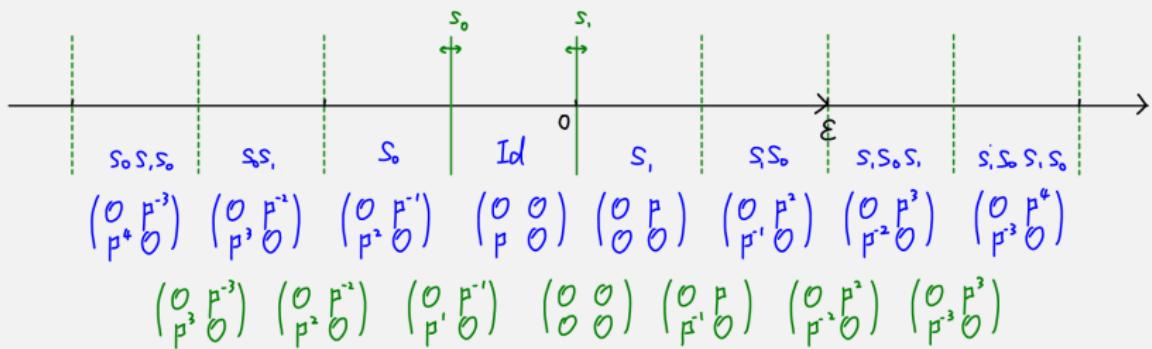
Extended Weyl group action(revisited)

W_{ext} acts on $X_*(T)$ by “twisted conjugation”:

$$W_{\text{ext}} \times X_*(T) \longrightarrow X_*(T) \quad (\mu \rtimes u, \lambda) \longmapsto \mu + u\lambda u^{-1}$$

When $G = \text{SL}_2(F)$, $W_{\text{ext}} = \langle s_0, s_1 \rangle$, where

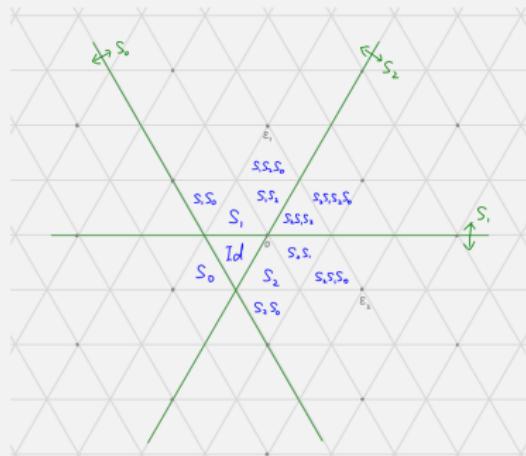
$$s_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & \pi^{-1} \\ -\pi & \end{pmatrix}$$



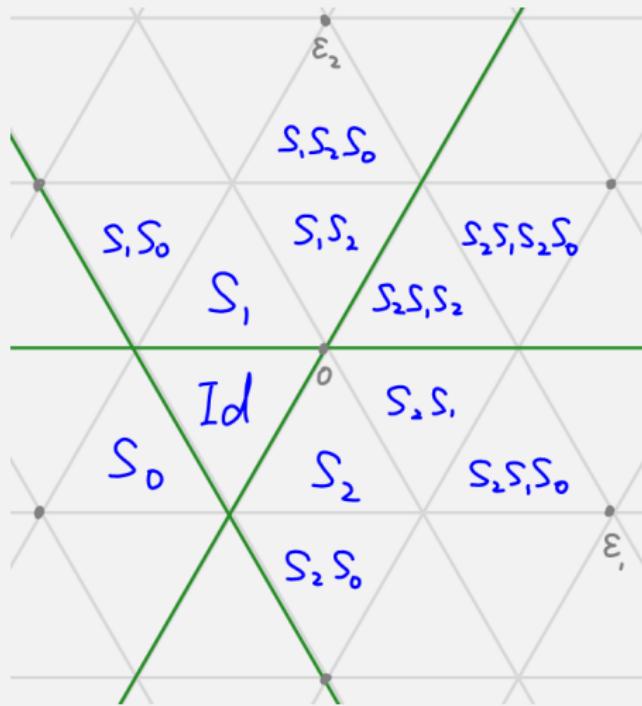
Extended Weyl group action(revisited)

When $G = \mathrm{SL}_3(F)$, $W_{\mathrm{ext}} = \langle s_0, s_1, s_2 \rangle$, where

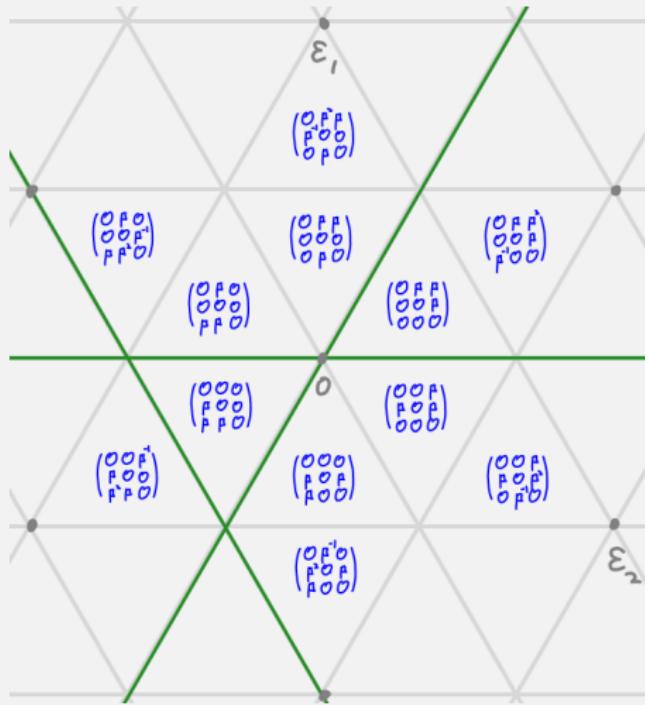
$$s_1 = \begin{pmatrix} 1 & & \\ -1 & & \\ & 1 & \end{pmatrix} \quad s_2 = \begin{pmatrix} 1 & & \\ & 1 & \\ & -1 & \end{pmatrix} \quad s_0 = \begin{pmatrix} & & \pi^{-1} \\ & 1 & \\ -\pi & & \end{pmatrix}$$



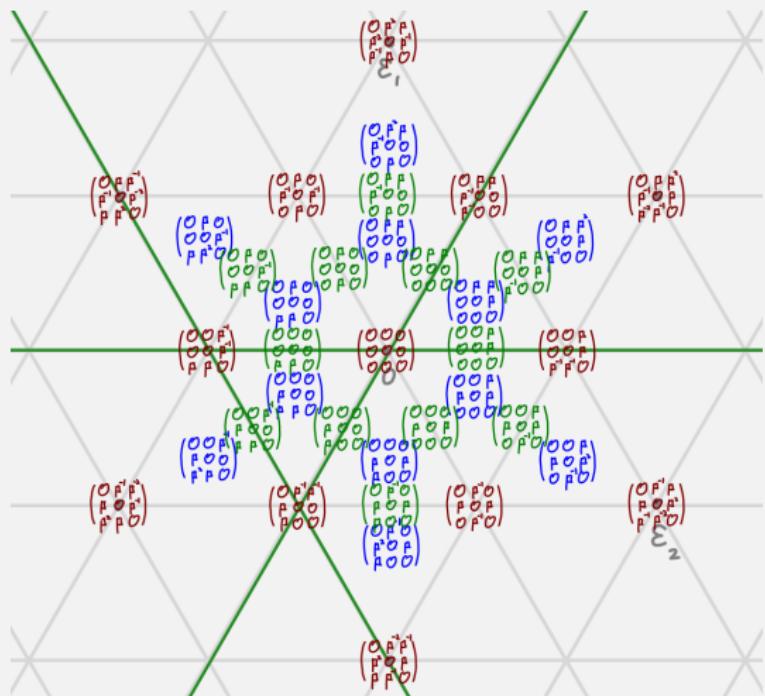
Extended Weyl group action(revisited)



Extended Weyl group action(revisited)



Extended Weyl group action(revisited)



p-adic building

p-adic building

Definition (chamber, apartment and building)

Given a maximal torus T over \mathcal{O} , the apartment is

$$\mathcal{A}_T := X_*(T)_{\mathbb{R}} = \bigcup_{I \supset T} \mathcal{C}_I,$$

and the *p*-adic building is

$$\mathcal{B} := \left(\bigsqcup_T \mathcal{A}_T \right) / \sim = \bigcup_I \mathcal{C}_I.$$

p -adic building

Definition (chamber, apartment and building)

Given a maximal torus T over \mathcal{O} , the apartment is

$$\mathcal{A}_T := X_*(T)_{\mathbb{R}} = \bigcup_{I \supset T} \mathcal{C}_I,$$

and the p -adic building is

$$\mathcal{B} := \left(\bigsqcup_T \mathcal{A}_T \right) / \sim = \bigcup_I \mathcal{C}_I.$$

Remark

Similarly, any two chambers lie in one apartment, and there is a unique geodesic through $p_1, p_2 \in \mathcal{B}$.

Plan of the talk

- 1 Spherical buildings
- 2 p -adic buildings
- 3 The Gromov-Schoen theorem

The Gromov-Schoen theorem

The Gromov-Schoen theorem

Theorem

Let F be a NA local field, (M, g) be a cpt conn Riemannian manifold with the universal covering space \widetilde{M} .

The Gromov-Schoen theorem

Theorem

Let F be a NA local field, (M, g) be a cpt conn Riemannian manifold with the universal covering space \widetilde{M} .

For any reductive homomorphism

$$\rho : \pi_1(M) \longrightarrow \mathrm{GL}_n(F),$$

The Gromov-Schoen theorem

Theorem

Let F be a NA local field, (M, g) be a cpt conn Riemannian manifold with the universal covering space \widetilde{M} .

For any reductive homomorphism

$$\rho : \pi_1(M) \longrightarrow \mathrm{GL}_n(F),$$

We call ρ reductive when $\overline{\rho(\pi_1(M))}^{\mathrm{Zar}} \subseteq \mathrm{GL}_n(F)$ is reductive.

The Gromov-Schoen theorem

Theorem

Let F be a NA local field, (M, g) be a cpt conn Riemannian manifold with the universal covering space \widetilde{M} .

For any reductive homomorphism

$$\rho : \pi_1(M) \longrightarrow \mathrm{GL}_n(F),$$

there exists a $\pi_1(M)$ -equivariant Lipschitz continuous regular harmonic map

$$h_\rho : \widetilde{M} \longrightarrow \mathcal{B}_{\mathrm{GL}_n(F)}$$

We call ρ reductive when $\overline{\rho(\pi_1(M))}^{\mathrm{Zar}} \subseteq \mathrm{GL}_n(F)$ is reductive.

regularity

regularity

Definition

h_ρ is regular at $x \in \widetilde{M}$ if

a neighbourhood of x has image inside an apartment \mathcal{A}_T of \mathcal{B} .

regularity

Definition

h_ρ is regular at $x \in \widetilde{M}$ if

a neighbourhood of x has image inside an apartment \mathcal{A}_T of \mathcal{B} .

h_ρ is regular if

$$\text{codim}_{\widetilde{M}} \left\{ x \in \widetilde{M} \mid h_\rho \text{ is not regular at } x \right\} \geq 2.$$

regularity

Definition

h_ρ is regular at $x \in \widetilde{M}$ if

a neighbourhood of x has image inside an apartment \mathcal{A}_T of \mathcal{B} .

h_ρ is regular if

$$\text{codim}_{\widetilde{M}} \left\{ x \in \widetilde{M} \mid h_\rho \text{ is not regular at } x \right\} \geq 2.$$

Example

The map

$$f : \mathbb{R}^2 \longrightarrow \left\{ y^2 = x^2 \right\} \quad (a, b) \longmapsto (a|b|, b|a|)$$

is regular.

regularity

Example

The map

$$f : \mathbb{R}^2 \longrightarrow \{y^2 = x^2\} \quad (a, b) \longmapsto (a|b|, b|a|)$$

is regular.

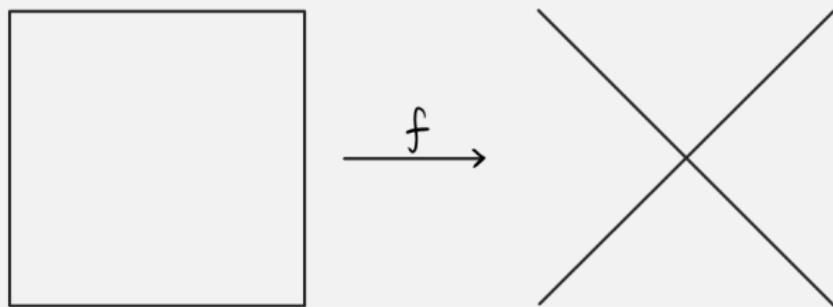
regularity

Example

The map

$$f : \mathbb{R}^2 \longrightarrow \{y^2 = x^2\} \quad (a, b) \longmapsto (a|b|, b|a|)$$

is regular.



$$\mathbb{R}^2 \longrightarrow \{y^2 = x^2\}$$

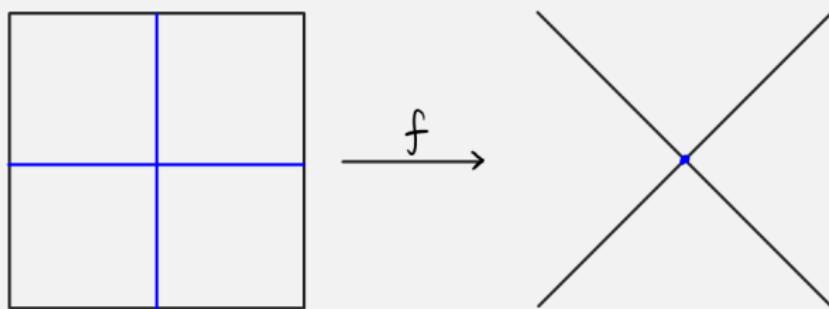
regularity

Example

The map

$$f : \mathbb{R}^2 \longrightarrow \{y^2 = x^2\} \quad (a, b) \longmapsto (a|b|, b|a|)$$

is regular.



$$\mathbb{R}^2 \longrightarrow \{y^2 = x^2\}$$

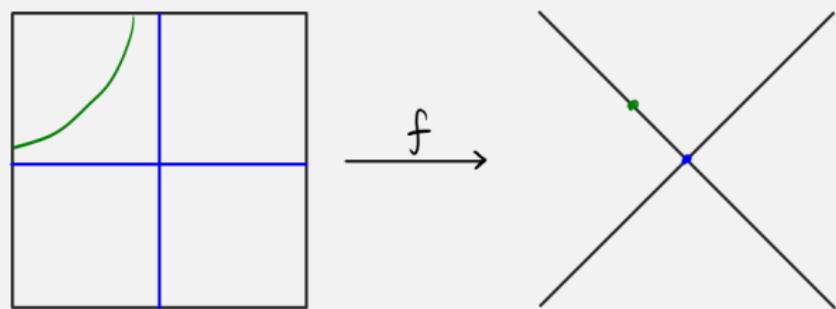
regularity

Example

The map

$$f : \mathbb{R}^2 \longrightarrow \{y^2 = x^2\} \quad (a, b) \longmapsto (a|b|, b|a|)$$

is regular.



$$\mathbb{R}^2 \longrightarrow \{y^2 = x^2\}$$

Thanks for listening!

You can get this slide at:

[https://github.com/ramified/personal_tex_collection/raw/main/
Bruhat-Tits_building/Bruhat-Tits_building.pdf](https://github.com/ramified/personal_tex_collection/raw/main/Bruhat-Tits_building/Bruhat-Tits_building.pdf)