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Figure: BSL3(Qp), from a talk by Annette Werner
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Standard subgroups

B =
(∗ ∗ ∗
∗ ∗
∗

)
 

GLn(κ)/B = { flags of κn}

= {V1 ⊂ · · · ⊂ Vn = κn | dim Vi = i}

P =
(
∗ ∗
∗

)
 

GLn(κ)/P =

Gr(r, n)

=

{V ⊂ κn | dim V = r}

T =
(∗ . . .

∗

)
 GLn(κ)/T = {κn = W1⊕ · · · ⊕Wn | dim Wi =1}

T is a torus, so every rep decomposes as direct sum of 1-dim reps.

X∗(T ) := Hom(T,Gm) ∼= Zn characters (1-dim reps)
X∗(T ) := Hom(Gm, T ) ∼= Zn cocharacters (1-parameter subgps)
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Weyl group

Definition (Weyl group)

W := NG(T )/T.

Example
When G = GLn(κ),

NG(T ) = { monoidal matrices }
NG(T )/T ∼= Sn Weyl group of type A

Remark
We have Bruhat decomposition proved by Gauss elimination

G =
⊔

ω∈W

BωB.

So the Weyl group is the “heart” of the reductive group.
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Weyl group action on cocharacter lattices

When G = GL2(κ), T = ( a
b ), X∗(T ) = Zε1 ⊕ Zε2, where

ε1 : Gm T

x ( x
1 )

ε2 : Gm T

x ( 1
x )

W = S2 = {Id, s1}

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}
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Non-standard subgroups

The subgroup T =
(∗ . . .

∗

)
is not the only maximal torus.

Fact
All non-standard subgroups are conjugated to standard subgroups.
Therefore,

{ Borel subgroups } =
{

gBg−1
∣∣∣ g ∈ G

}

∼= G/B

{ parabolic subgroups } =
{

gPg−1
∣∣∣ g ∈ G

}

∼= G/P

{ maximal tori } =
{

gTg−1
∣∣∣ g ∈ G

}

∼= G/NG(T )
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Weyl group action on cocharacter lattices(revisited)

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}

When G = SL3(κ), T =
( a

b
a−1b−1

)
, X∗(T ) = Zε1⊕Zε2, where

ε1 : Gm T

x
( x

x−1
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)
ε2 : Gm T

x
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x
x−1

)
W = S3 = 〈s1, s2〉



Weyl group action on cocharacter lattices(revisited)

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}

When G = SL3(κ), T =
( a

b
a−1b−1

)
, X∗(T ) = Zε1⊕Zε2, where

ε1 : Gm T

x
( x

x−1
1

)
ε2 : Gm T

x
( 1

x
x−1

)
W = S3 = 〈s1, s2〉



Weyl group action on cocharacter lattices(revisited)

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}

When G = SL3(κ), T =
( a

b
a−1b−1

)
, X∗(T ) = Zε1⊕Zε2, where

ε1 : Gm T

x
( x

x−1
1

)
ε2 : Gm T

x
( 1

x
x−1

)
W = S3 = 〈s1, s2〉



Weyl group action on cocharacter lattices(revisited)

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}

When G = SL3(κ), T =
( a

b
a−1b−1

)
, X∗(T ) = Zε1⊕Zε2, where

ε1 : Gm T

x
( x

x−1
1

)
ε2 : Gm T

x
( 1

x
x−1

)
W = S3 = 〈s1, s2〉



Weyl group action on cocharacter lattices(revisited)

When G = SL2(κ), T = ( a
a−1 ), X∗(T ) = Zε, where

ε : Gm T

x ( x
x−1 )

W = S2 = {Id, s1}

When G = SL3(κ), T =
( a

b
a−1b−1

)
, X∗(T ) = Zε1⊕Zε2, where

ε1 : Gm T

x
( x

x−1
1

)
ε2 : Gm T

x
( 1

x
x−1

)
W = S3 = 〈s1, s2〉



Definition (chamber, apartment and building)
Given a maximal torus T , the apartment is

AT := X∗(T )R =
⋃

B⊃T

CB,

and the building is

B :=
(⊔

T

AT

)
/∼ =

⋃
B

CB.
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Example of spherical building

When G = SL2(F2), the building B has 3 apartments and 3
chambers.

Figure: BSL2(F2)

When G = SL3(F2), the building B has 28 apartments and 21
chambers.

https://buildings.gallery/
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Remark
B inherits the metric structure from AT = X∗(T )R.

B has also polysimplicial complex structure.
When κ = Fp, B is finite. i.e., having finite many chambers

Proposition
Any two chambers lie in one apartment.

There is a unique geodesic through any two points p1, p2 ∈ B.
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p-adic notation

symbol name example

F NA local field

Qp

O = OF ring of integers

Zp

p = pF maximal ideal

pZp

κ = O/p residue field

Fp

π ∈ pr p2 uniformizer

p

v : F ∗ −→ Z valuation

v
(

a
b pk

)
= k
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symbol name example

F NA local field Qp

O = OF ring of integers Zp

p = pF maximal ideal pZp

κ = O/p residue field Fp

π ∈ pr p2 uniformizer p
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(
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= k



standard subgroups in the p-adic world

π : GLn(O) −→ GLn(κ)

I = π−1(B) =
(O O O
p O O
p p O

)
Iwahori subgroup

P̃ = π−1(P ) =
(
O O
p O

)
Parahoric subgroup

=Parabolic Iwahori subgroup

Remark
They also have moduli interpretations. For example,

GLn(F )/I ∼= {pL = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L | Li+1/Li
∼= κ}

= {O-lattice chains in F n}
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Extended Weyl group

To get the Iwahori decomposition

G(F ) =
⊔

ϖ∈Wext

IϖI,

we define the extended Weyl group as

Wext := NG(T (O))/T (O) ∼= X∗(T ) o Wf .

Example
When G = GLn(F ),

Wext = { monoidal matrices }
/(O∗. . .O∗

) ∼= Zn o Sn.
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Extended Weyl group action

Wext acts on X∗(T ) by “twisted conjugation”:

Wext ×X∗(T ) −→ X∗(T ) (µ o u, λ) 7−→ µ + uλu−1

When G = SL2(F ), Wext = 〈s0, s1〉, where

s1 =
(

1
−1

)
s0 =

(
π−1

−π

)
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Extended Weyl group action

Figure: Reduced expressions labels, from Lievis

https://www.jgibson.id.au/lievis/


Non-standard subgroups in the p-adic world

Similarly,
{ Iwahori subgroups } =

{
gI0g−1

∣∣∣ g ∈ G
}

∼= G/I0

{ paraholic subgroups } =
{

gP̃0g−1
∣∣∣ g ∈ G

}
∼= G/P̃0

{ maximal tori over O } =
{

gT0g−1
∣∣∣ g ∈ G

}
∼= G/NG(T0(O))

{(I, T ) | I ⊃ T} =
{

(gI0g−1, gT0g−1)
}
∼= G/T0(O)

{T | T ⊂I0} {I | I⊃T0}

{(I, T )}

{I} {T}

I0/T0 NG(T0)/T0=Wext

G/T0

G/I0 G/NG(T0)

{ chambers } 1:1←→ Wext
1:1←→ {I | I ⊃ T0}
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p-adic building

Definition (chamber, apartment and building)
Given a maximal torus T over O, the apartment is

AT := X∗(T )R =
⋃

I⊃T

CI ,

and the p-adic building is

B :=
(⊔

T

AT

)
/∼ =

⋃
I

CI .

Remark
Similarly, any two chambers lie in one apartment,
and there is a unique geodesic through p1, p2 ∈ B.
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The Gromov-Schoen theorem

Theorem
Let F be a NA local field, (M, g) be a cpt conn Riemannian
manifold with the universal covering space M̃ .

For any reductive homomorphism

ρ : π1(M) −→ GLn(F ),

there exists a π1(M)-equivariant Lipschitz continuous regular
harmonic map

hρ : M̃ −→ BGLn(F )

We call ρ reductive when ρ(π1(M))Zar ⊆ GLn(F ) is reductive.
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regularity

Definition
hρ is regular at x ∈ M̃ if

a neighbourhood of x has image inside an apartment AT of B.

hρ is regular if

codim
M̃

{
x ∈ M̃

∣∣∣ hρ is not regular at x
}
> 2.

Example
The map

f : R2 −→
{

y2 = x2
}

(a, b) 7−→ (a|b|, b|a|)

is regular.
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Thanks for listening!

You can get this slide at:
https://github.com/ramified/personal_tex_collection/raw/main/
Bruhat–Tits_building/Bruhat–Tits_building.pdf

https://github.com/ramified/personal_tex_collection/blob/main/Bruhat--Tits_building/Bruhat--Tits_building.pdf
https://github.com/ramified/personal_tex_collection/blob/main/Bruhat--Tits_building/Bruhat--Tits_building.pdf
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